37

Development of Tamil Spelling and Sandhi Checkers in a Crowd-Sourcing Enyironment

Vasu Renganathan
University of Pennsylvania vasurisas.upenn edu

1, Intrgduction

This paper discusses in detail the development of a Tamil Spelling and Sandhi checker application
online in a Crowd-Sourcing covironment. Thig resource a8 made available at

hip:faww thetamillanguagre . com/dspellcheck 1s furnished with a comprchensive sel of Taml
words in their lexical form along with a morphological tagger that is developed following the concepts
and principles ol the theory of Lexical Phonology. Any bilingual text with Tamil when provided in

Unicode characters, this apphicanon 1s capable of checking both sandhi and spelling of the words. All
of the inflecled words arc scgmented uwsing a morphelogical tagger lo get their root form and
correspondingly mapped aganst the lexical words thal arc stored m the clectrome dictionary to make
sure that they conform to the 1wiles of Tamil mompholagy. The miles in the marphological tageer are
derived in such a way that they follow the rules of the tuee level morphology ag delined in the theory
of Lexical phonology. When any infllecicd word 18 mol recogmized by Lhe tagger, but arc
morphologically acceptable. they arc stored in a cusiom database of inflected words [or [uture use.
This custom databasc that is updatable by the process of crowd-sourcing imncthods is constantly being
manitored to insure that the words stored therein are valid Tamil words in all respects. ‘Thus, the
power of this Spell checker lies o the number of valid entries as stored in this custom dalabase as well
ag the rules as included i the lagger. Thus far. thig database contains aboul twenty [ive thousand
words and this pumber is growing constantly based on the number ol users whoe contribule to it. This
paper while attempting to illustrate in detail the linguistic nuances and ather practical issues that ane
would face while building spellmg checkers for Tamil in general. 1t also ines to layvout a method of
crowd-sourcing as o how some of the obstacles while making spelling checkers can be resolved. The
Sandhi cheeker appheation, on the other hand., lakes mlo consideration only the external Sandhi rules
as defined in the Tamil traditional grammars and attempts to make sure that the words belonging to
particular calegories infleet for external sandhi appropriaicly .

2. Building Morphological Taggers tor Tamil

Although v is theoretically possible o parse all of the infleceted words of Tamil programmatically. one
would encounter into instances where the words are too difficult to parse due to their novel and non-
standard form. When rules are written to parse words from right left, two tvpes of such rules need to
be kept in mind. One o denify suffixes i a number of subscquent steps without having Lo apply
anv morphological rules and the other to perform all the momhological sandhi riles in cvery step of
the parsmg processe 10 atrive at the root [orm of the word. Thus, with words like afippataivik,
atippulaivakuntaiippaiaivana cle., one can allempl o recognize suffixes such as dha. @kum. dna
follawed by the glide to get to the dictionary word @/ippajai This can be illustrated based an the level

ordered morphology as below:

WAL L2-0% ()3 -akum. dniq/ dlea)

38

L1 indicates the word creation component, L2 is meant for all the case suffixes and subsequently L3,
on the other hand, is meant for the adverbial and adjectival markers. In order to parse words in this
fashion. one would nced to know ahead of time all of the morphologically acceptable combinations of
the word atippatai in all of these three levels. Inflections of words, in this sense. is infinite in nature
and it would be unmanageable for one to come up with a list of all possible inflectional possibilities in
any finite manner. nor can one categorically state that all of the L2 and L3 suffixes can be filled-in
with all of the words. This means that the inflectional possibilities of words in Tamil is almost random
in nature and theorizing the possibilities would be a futile task. In order to resolve this issue of infinite
possibilities of inflected words. the present method is attempting to make use of the crowd-sourcing
option. which allows us to store words in their inflected forms in the database. Consider that we
include the above rules to parse words with finite set of suffixes conforming to the level ordered
morphology as described in the theory of lexical phonology, accounting for the finite set of
combinations is quite possible with any efficient morphological tagger. (Cf. Refer to Renganathan
2001 and Renganathan 2016 for a detailed description of how one can build a Tamil tagger following
the principles of the theory of Lexical Phonology). However, the other type of words that can not be
accounted for by such rules can be stored in a custom database and verified manually for their
correctness. Following words that are not accountable by the above rules are stored in the custom
database as below.

atippataitturaikalai
atippataiva
atippataivakak
atippataivilana
atippataiyvilanatu
atippataiyviléyé
atippataiyilirunté
atippataikkaana

As one can note these words indicate the occurrences of case suffixes at L2 level along with the ones
at L3 level:

{AW-L1}(v)L2-1VVai}(y)L3-akum ana 'aka anatu/éve}

In the tagger part of this tool, the words like afippataiyaka, atippataiyakum,atippataiyanacan be
accounted for using the alrcady available rules without the L2 suffixes. But the rest of the words as
presented here with L2 suffixes can be accounted for by adding them to the rule-base. What is
important to note in this context is that these words need to be verified manually by a human to make
sure that they are valid occurrences before adding them to the rule base, either by exploiting any
machine learning algorithm or simply by adding the rest of the forms as part of the rule-base. If the
tagger needs to be made robust to reduce the burden of the custom database, onc needs to train the
tagger in such a way that additional rules for the inflections of the words like afippatai can be
derivable from the above set of words. What is significant to note in this context is that number of
possible combinations of every word in Tamil is thus infinite and can not be accounted for by any
plausible morphological tagger unless one can produce possible combinations through a custom
database as defined here.

The other complex context to parse words in Tamil is to apply morphological rules in every step of
parsing until one gets to the root word. For example. consider the following set of words:

39

mutalnia mutalittalarkalukku
mutaliggalarkal mutalipinil
mutaliffaic mutalifraik

In order Lor one to get 10 the rool word wndalFii [romn the above scl ol words, parsing all of the sullixes
in a parvicular order should (ollow the msertion of the cnuncalive vowel 2. which is remoyved when
addmg suffixes 1o # ending words, Similarly, words like marattai, maratial, maranukkaka ete., with
—um coding words, the sandhi rule o remoyve the inerement =it o —am needs o be inplemented.
What one might envision under this circunstance is that it might be possible to make rules to parse
words that are {inite in nature, but in the real world there exisis infinile number of combinations oul of
a Mmile sct ol words and suffixes. 'o complicate the process lurther, there ave words with prelixes
such as ak, -at, -iv, -ov cte., as mn akkaranctinkkake, aoltofiupotulia, nvélaiyil, ovélailda,
avvatippataitturaikalat cte., which make the number of possibilities of inflected words even higher in
number due to their two way agglutinative characteristics. If our aim is to identify the root word out
of any inflected word, what we see in this context is that there is a two-way parsing method that one
needs to implement and cach of these paths leads lo unimaginable and unaccountable number of
possibilitics ol in(lceled words.

3. Infinitc number of inAeetions with finite number of words

What poses as a problem to correctly identify "I'amil svords as whether they are correct forms or
not 1s ool the owal number of morphological cules in the language, but theie nfinile oumber of
pogsibilitics of word formation technigues. Possible oceurrences of words in their lexical forme in the
language may be finite in the sense that buflding a relatively big dicticnacy can ascount for the already
available words as well as the newly created words. but accounting for all of the possible
combmatiens of suflixcs with cach of these words would be mpossible lo account for. Accounting
for words in English, ITindi and other word level languages can be simple provided a robust dictionary
as well as a sct of comprehensive rule base 1s buill. But. whal happens m the agglulinative languages.
like Tamil, is that the agglutinative and iterative property makes the combinations of word forms
infinite in naturce and they arc almost unaccountable by any delinite sct of compuling rules.

4, Crowd-sonrcing method

The application that is under discussion is accessible at
http:/fwww.thetamillanavase com/fspellcheck

as well as with an ability to read any website using the following URL in a GET method:
hitp:fwww. thelamillanevace. comspellecheckd/url spellcheck. php?url=hup:#

In the former method once would necd 10 copy/pasic Tamil text or any bilingual text with Tamil and
perform the spelleheck. Tn the latter method, on the other hand, onc can speeily any website using its
URT. and spellcheck the content in the (ET string. In hoth methods, this taol identifies only Tamil
words and attempt to recognize them by makmg use of the morphological parser. clectronie dichionary
and the cuslom database. When attempling (o parse words, this apphicauon (rics 10 get 1o Lthe Tool
word and match it with that of the lexical words as stored in the electronic dictionary. If this step fails,
it tries 0 see il the inflected word is alrcady available in the custom database. These two sweps are,
thus, used o wdenufy all of the morphologically aceeptable words in Tamal. At the end of the process.

40

all the misspelled words along with the unrecognized words arc presented to the user to et them store
the acceptable words but unrcecognized by this application inlo the custom database. At this siep. the
uscrs arc required to go through the words manually and identifs only the comrect words to store them
in the database. This step is unavaidable for the reason that anly this sart of mathads can be used ta
deal with the infinite nature of possible combinations of Tamil words. All of the words as slored in
Lthis custom databasc are counter checked periodically for their vahdily in lerms of conlormmg o the
morphological as well ag stvlistic rules. Although thig siep is morc ledious and lime consuming
compared w the other sieps ol spell checking and storing, il becomes the most important step Tor the
reason that the custom database is crucial to account for all of the infinite number of word formation
lechoiques. Storing any mmcorceel words i this custem database would lead 1o defeetive nature of ths
application, As of now. this custam database is thoroughly momitared to make sure that it does not
contain any of the [ellowing type of words: a) Spoken Tamil forms. b) English words written in Tamil
seript and ¢ msspelled Tamil words. Whal 1L entanls 1s that this lool can be used o0 1denlily not only
all of the misspelled words but alse the spolken “I'amil forms along with the English words written in
Tamil geripl.
4.1, Three types of custom database tables

Although this tool allows users at large to store words in the database, three tvpes of
restrictions are implemented 1o avoid any unwanted circumstances, When the adming and
other known responsible users are using this tool. the words they store are kept in a database
separate from the others, which are constantly updated by users at large. ‘Lhe difference
between these two types of databases 1s that the latter requires additional scrutinization by the
admins where as the former not. In a way. the former type of database may be called as the
monitored and secure dalabase while the later an unmonilored one bul scrutinized with
additional elloris. DBesides, a third ype of dalabase is also made use ol Lo slore words [rom
awomatic harvesting by what s called the process of web crawler. In this method all of the
unrccognized and unaccountable words are allowed to be updated in this database constantly
without any human involvement as it grows. The advantage of this method is to build the
databasc with innumerable number of words awtomatically without any human iniervention,
but the disadvantage of this method, however, 1s that words n this custom database requires
excessive amount of time to scrutinize them manually. Thus, words from these three databasc
tables namely inflected_words_closed, inflected_words_open and harvested_words
collectively contribute to the strength of this spelling checker in one way or the other. This
application, as ol now, can check len words per second. However, when more rules are
incorporated into the rule base and the tagger 15 capable of recognizing more number of
words, the cfficiency of this application can be improved further. A cumulative list of the
words from all of thege three dalabase (ables can be viewed al
hitp:Swww thetamillanguage.com/sspelleheck/vicw customdatabase. php.

5. Sandhi checker

This application is alse enabled with checking the Tamil sandhi forms as conforming to
traditional Tamil grammars. As of now, the requirements such as dative form with the sulfix =k,
accusative form with the sulflix —ai. infinitive form with the sulfixes —kka. -ka, -a. adverbial marker -
aha. adverbial participle markers —tlu, tu, tru, 1, u cte.. are adequately taken care of 10 make surc the
stop seund 1 the following word 15 duplicated. Unlike the spelling checker, ths part of the routine 1s
made to check words in a sequence. It also checks to make sure that the adjectival participles and
other case [orms do not duplicate the [ollowing stop sounds. In order 1o identilyv these grammaltical
categorics within the teat, this application uttlizes the morphological tagger 1o parse suflixcs and

41

finally matching the words in the dictionary for conformity, To ¢itc ong cxample, in arder for this tool
lo identify the wordg like marafted as an accusalive form . it uses the lagger 1o scparawc the sullix —ai.
perform the —evm ending sandhi rule and finally cheeks to make swre that the word maram is in the
dictionary. When the word is not in the dictionary ar if the sandhi rule fails, this tool tails to identify
the accusative fonn and subscquently fails o make the sandhi cheek. Thus, the words belonging 1o onc
al” the above calegorics need w conform the spelling checker in order Tor the Sandh cheeker 1o
work properly.

6, Technical detaily of this application

This application is writien in the programming language PITP with TQuery and Javasgeript [ront-
end interfaces. An wslance of a MySQL database 1s uscd o store and (eteh records [rom lables. A
number of open-source PHP libraries are used to recognize Tamil unicode characters as well as parse
them bascd on their binary propertics. These library modules are used calensively o parse Tamil
words m a number of different ways of strimg mampulation lechniques.

7. Machine learning algorithms

A comprehensive machine learning algorithm 18 applicd on the unrceognized words ag lisied in
the cuslom databasc. so the rule base withim the lagger can be strengthened further. A dala dniven
spellchecker is one of the options that can be explored to accomplish the tasks involving all of the
novel constructions in Tamil words. “In the solthiruthi project we made advances o have a
framework for a data-driven spcllchccker, with algorithms to recognize conjoined Ietters and fow
sicmmer functions {of many possibilitice allowed w Tamil language).” (Sved el al.. this volume).
Also sce Annamalai (2017) for a number of other approaches such as neural nel configuraton, dala

driven approach cle . 1o recogmize a massive scl ol nnrecognizable Tamil words by compuler

8, Conclusion

Any suceessful Spelling Checker application would heavily rely on how one can account for all of
the infinite number of inllectional forms of words in Tamil. TTnlike the word level languages, like
Enplish, Hindi etc,, Tamil is heavily asglitinative m nature and it makes possibilities of the
combination of suflixes and prefixes in words exponential in natwre. In order 1o manage this
exponcntial nalure of T'amil word forms, a crowd-sourcing method 18 implemented and demonstrated
in this paper. The more the use ol this crowd-sourcing application by users and subsequently buildiog
the custom database with morc number of plausible words, legs cumbersome il would be Lo recognize
the crrors in Tanmil texts of any volume, It is impartant to note n this context that a similar cffort of
crowd-gourcing was sucecssfully implemented w deal with the inflected words (rom Sangam Tamil
lext for the purposes of glossing applicaton that attempls 10 gloss words from the poems using Lhe
informarion as providad in the Lexicon. (Cf. http:/www thetamillanguag s com/sangam/elossing php).

9. Relerences
Anmnamalm, M. (2017) “Classifying Tamil words — parl=2."" blog posl aL
https:/fezhillang, blog /200 7/1 220k lassifvinp -tamil-words-part-2/
Renganathan, Vasu (2016). Computational Approachces to Tamil Linguistics. Cre-A. Cheonai, Tndia.

Renganathan. Vasu (2001). Development of Morphological Tagper for Tamil, Tn the Proccedimgs of
the International Conference on Tamil Internet 2001, Kuala Lumpur, Malaysia.

Sved Abuthahir, T. Arulalan. Sathia Narayanan. Sureadhar Ravichandran. A. Acunram T,
Shrinivasan and Muthiah Annamalat, “Growth and Evolution of Open-Tamil.” This volume.

